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Summary

The point processes of high level exceedances are investigated

under a weak mixing condition restricting the long range dependence

of the stationary sequence. Depending on the local dependence,

the asymptotic properties of the clustering of the exceedances

and the cluster size distribution are found. This is described

by the convergence of the point process of high level exceedances

to a compound Poisson process.
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l Introduction 1 ]
Let Xi,X 2,...be a stationary sequence of r.v, with F(x)=P{Xi<x}.

Assume that there exists a sequence {Un} nl such that nF(u n)t>O,

as n- -.where F(x)=l-F(x). Furthermore we assume that Leadbetter's

D(u n ) holds, i.e. for any choice of integers

l <i <i 2< ... < i p<j l< ... <j p ,n , Jl-i p> t

for any n,f,p,p' we have

IP{X il<Un .. x. _ ,X l -< u , n  p ' u n }- P{Xi 5u n,...X p Un }P{X !u n,...X !U n}I

1nan ,1n

where for sequences {kn } and I n}

kn.tn = o(n) and kn*an,Z n= o(0).

(see e.g. in Leadbetter, Lindgren and Rootzen (1983)).

For such a kn define rn = n/k n and let

ir
N i n l(X>u n ) n=,...kn
ni j=(i-l)rn +1

be the number of exceedances in the ith block.

ir n- n

Similarly, let N'(i)= Il(Xj>u )" j=(i-l)rn +1

be the number of exceedances in the ith block, where the last

bn indices are deleted. In this case the blocks are separated

by f n"

The cluster sizes N n(i) define now the marked point process Yn on (0,1] IN

by setting: Yn has a point at (i/k ,J) if N n(i) = j>O. In the same way the

marked point process Yn on (0,1] x IN is defined by replacing N n by Nn .
n nl
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We give sufficient conditions on {Xi } such that Yn converges in

distribution to a Poisson process Y on (0,l] x IN. Define the

projection 7 of point procysses in (0,1] x IN onto (0,1) by setting

7(u) = j 2J6 for any point process u = Z8.6 with
.. i 2j T iT

T j = (ljT2j) E (0,1] x IN. Since the limit process Y is simple,

a -1 and Z = r(Y) is a compound Poisson process. By the continuous

mapping theorem we find therefore that the point process Zn = (Y n)

of exceedances of the level un in (0,1] converges in distribution to Z,

i.e. with the points i/rn such that N n(i) >- 1.

The proof uses a theorem of Kallenberg (1976). Since the

limit point process Y is simple, it is sufficient to prove that

(1) EYn(B) n-t EY(B) for any B = (a,b] x N

where o<a<b:l and N c I

and

(2) P{Y (B) = 0) n._), P{Y(B).= 01 for any finite union B

of disjoint "rectangles" as defined in (1).

,O In the second section we deal with the cluster size distribution,

i.e. mainly with the statement (1). In Section 3 we give a

sufficient condition such that (2) holds, which then implies our

limit result. In the last section we discuss two examples,

which exhibit two possible cluster size distributions which are

concentrated in the first case on a finite number of points and

in the other case on an infinite number of points.

'1

I,
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2. The cluster size distribution

In this section we deal with the probability law of the

marks on UJ,i.e. with sufficient conditions such that

(A) P{Nn (1) = kINn(l)>l} n-o 'k for all kl.

Define E(s) = k i< . >sr >un ,n Ii2< <I .nisU n

for all sal, where u n is such that nF(un )- T> 0

Let

finf is: )Lm ES) = 01 if such an s existsn
= otherwise

Then we use the following conditions:
(3) i) If s <-assumethatE(S) -,- a for all s < s.

o n n-o s 0

ii) If so= C assume that En(S) c-ts for all s and that

s k - 0 as s- for all k<k0

where ko  {inf {k:Y (_1)i (kl )k+i  = 0} if such a k exists
othe ")Wse

Furthermore we assume that

So l)i-Il>(s
(4) 1 (-1 ai>0 where E(S) -) a for all s~so and a 0 if so=

ii n n- s0

This assumption is related to the case of a positive extremal

index a (see Leadbetter (1983) Corollary 3.5) since the sum in

* i-I

(4) is equal to OT. Thus we denote in the following 1(-l) i1  = 6T.

We show now that an asymptotic measure v on the marks exists,

which gives the limit probability law in (A). By stationarity

PIN (i) = k I N (i) a 1} = P{N (1) = kIN (1) 2 11 for all i-kn. For
n n n n n*

the right hand side we have the following limit result.

pI

- V V Sv/
l~r i: ' "a"," "i "' r'#

' W , ' ' W , - ' ' ' - ' - € .
V..' " . .. # .;.-.'.*.", ,., " " -.',.,-°
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Lemma 2.1: Assume that (3) and (4) hold. Then for all iskn

PINn(i) = krNni) - 1} - for all kzl, as n-,

So So i-f

where lk =( l)i'k(1))/( (-I) 1  i) for
i=k 1=1

k<k o, ilk = 0 for k-ko with ko = so if So<00.

I%.r: Proof. 1) We assume so<-. By the Bonferroni-inequalities. for odd so

kP{NN (1)>l} _ E( ) - E 2) +...+ESo)n nn n n
and

knP{Nn(I)k1} _ E1l) - E (2) E(so-1)
n n n nn

Taking the limit we find by using a = 0 and (4)
si -

lim k P{N ()l} = ! o (-1)i-l i > O
n n i=O

which holds also if so is even.

For P{N (1)}!s We find that k P{N (1);s } ! E So)  0 as n -;n 0 n n 0 n

thus lk = 0 for all k 2! so.

Using the Bonferroni-inequalities again, we have for so-k even

knP{Nn(1) = k} g E (k) (k+l )E k+l) + (k)En0

and k PNn(1) = k} E(k) _ "k" +l . (0

n n n k )n k n
Taking the limit we have

lim k nP{N n(1) - k) - o (.)ik(1)
n-n l-k

which is also true if s0-k is odd. This implies our statement.
2) Let us assume now so =0. As in 1) we have

00

liJim knPIN (1) -I = -')J'la
- sJ=l(adl

s inc e a 00and al so

F4~ .ab
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r
k k (P{N ) = k} = n (-l ik)E()
kn n i=k

Let Pk = lim sup knP{Nn (1) = k}, Pk = liprnf knP{Nn(1) = ki.

Then by the Bonferroni-inequalities we have for any even s and k<k o

s+k+l *ki s+k •-ki
I. I -l k )ai !5 Pk <5 5k :giyk (-l) "k )a I .-'.:.i =k_ i=k

",, , (k+ s+ l ~0 k o k s +
The two bounds differ by ,k ~)k+s +l = O( ks ) = o(1) as s---,

bv assumption (3). This implies as in the proof of Corollary

3.5 of Leadbetter (1983) that

- = lim k P{N (1) = k} = i ()ik(+)
k - n-on n i=k

which gives our statement.

--,.*. Ifko<0, we observe thatuk=0forall k>k, for

knP{Nn(1 ) ? ko} s o (.l)Jko-l+j)E ko+J)n nj=O ko0-1

72 for any even ,j0 (see Feller (1968) p.110). ThusJo .'._: joko-l+j )a

ok j=0 k 0-1 0
and similarly o-l~j( k +J

o j=0 ko0-1 0

The two bounds differ by 0((ko+jo)ko0l ko+J 0 o() as j.k-.

By the same argument as in i) we findo +j oaK

ci __-1_ = 0. 0
P j=0 ko-i 0

Pi. Remark 2.2 It is obvious that u is a probability measure on the

set of marks. For

ks 0 k l s i i kk i l To ) a( ) (-I)  k ) Ii
k.. kl i .I W

QAl
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To prove (1) we use weaker but less explicit conditions than (3) and

(4). Suppose

(6) k P{N (1) _> 1 + 0T

for 6 E (0,I], T>O. 4

As mentioned above, (4) implies (6).

Lemma 2.3: If (A) and (6) hold, then
E(Y (B)) - E(Y(B)) = OT(b-a)u(N) =Xx(B)

n
with B as in (1), p(N) = k and B=Tm where m is Lebesque measure.

keN

Proof: By stationarity we have

"( B)=PNME}- (b-a)PfNn(1) a U} P{Nn(1)ENINn(1) 2> I}

i(kna ,knb] n n n n n

~((N)+o(l))kn (b-a)eTknl - eT(b-a) pj(N).

,* Remark 2.4: Obviously, condition (3) and (4) imply the assumptions

of this lemma by Lemma 2.1; thus (1) holds if the exDlicit conditions

(3) and (4) are satisfied.

Finally, we show that also the conditional probabilities in (A)

- with respect to Nn converge to 1'k if (A) holds.

Lemma 2.5: Assume that (A) and (6) hold. If k fn = o(n), then

P{Nn(1) = kINn(1) } k as n-sw, k2l.

Proof: We have for any k~l

0 _ P{Nn (1) > k} -P{Nn(l)k} < P{X>u n  = £n(un) = O(knl
. jeJ

where J = {rn-tn + l,...,rn}. Thus for k > 1
pffln(l) > k) PfNn(1) > k) + O(kn pri Pfl(1) > k}

I}4n(1 >=I - > 1} n n- + 00I),P{Nn(1) > I = n_'(1) > ') = Ikn
- - {NnPNn(l) 1 )> 11 + n(k ) P{Nn (1) > 11

since P{N (1) > 1} - 6Tknl, e>O. This completes the proof.n n
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3. The Poisson limit

In this section we mainly deal with the statement (2). In the

first step we show that in (2) we may replace Yn by Y'.n

Lemma 3.1: If k n-n = o(n), then for any B as in (2)

(7) P{Yn(B) = 0} - P{Yn(B) = 01 - 0 as n -

Proof.: Without any restriction we may assume that B is of the form
J

(8) B = Lj ((aj,b ] x N )

where O<a1I<b1!a2<b2_<.. ._aj<bj:l, J-l, N c IN.

For simplicity of notation we give the proof for J = 1, i.e.

B = (a,b] x N. Then the difference (7) is, with I n (k na,k nb],

bounded by the two terms

P{(Nn (i)N, Vi E In) n (Nn(i) i N, i E In )C}
ar.d

P{(Nn (i) j N, Vi e I)c n (N,(i) N, Vi In)1

The first term is bounded by

(9) P{3i E In: Nn(i) e N n Nn(i) c NI < Z P{Nn(i) 0 N n n(i) E N1

i In

= IIn P{N n(1) 0 N n Nn'(l) NI

by stationarity. The last event implies that there exists some

j E [rn-Zn+l,rn] such that X.>u n. Thus (9) is bounded by

O(kn-*n " '(un)) = o(0).

In the same way the second term is bounded. 0

Thus it remains to prove that

(10) P{Yn'(B) = 01 -+ exp (-O l (bj-aj)u(N

where B is as in (8). The proof of this statement is simple, if

the measure u is concentrated in one point k IN. This is e.o.
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the case if the condition D'(u n) of Leadbetter (see Leadbetter,n

Lindgren and Rootzen (1983)) holds; i.e. 1l, Pk=1 V k>l. The proof

follows the idea of the proof if 0'(u ) holds.

Lemma 3.2: Suppose D(un) and (6) hold. If (A) holds with Vk=l for

a kl and vi=O Vi # k, then (10) is true.

In this particular case j (b.-a.)(N.) = I (b' - at), where we doji j=l J

not count the rectangles ((aj,b.] x N.) with N. n {k} = 0, i.e.

B ((] 1] - L (atb] x {k)= B'.

j=l

Proof: i) We show that PfY'(B) = 1= P{Y'(B') = 0} + o(l). Since
n, n

Yn(B) > Y'(B') we have for In = naj , knbj ]

0 < P{Y'(B') = 0 - P{Yn(B) = 0} < I P{N (i) E IN \ {k
- -iEI nn

In IP{NN (1) > l1}'P{Nn(1) # k I Nn(1) > } O(knkn o()) =o),

since (6) implies P{Nn (1) > 11 -O/kn.!: . L t i i ' k ''I

ii) Let In = il (k a.,k b]. Since {N (i) = 0, Vi c In}

i J= nn nn

N M N(i) k, Vi E In'}= {Yn(B') = 01, it follows that
nn n

0 < P{N'(i) # k, Vi c In - P{Nn(i) = 0, Vi c In  _i l '(i) J {0,kI
knI  n n

= (kn- no(l)) = o(l) as in i).

iii) Let A. = fN'(i)= 0}. Then by enumerating the i's in

1 as i1 ,i29 ... with jn 1Ifjn we get

IPfN'(i) = 0, i € I'} - II P{N'(i) = 01 I <
n

r. d Ir e~dq 4* e
*0~AM *0o z



in-I j+1 9 "

(10) < Y I P( n Ai) -P( n A. )'P(A. )I. ]
j=l k=l "k k1 1k lj+l

Since the index sets are separated by Z, it follows

nnby D(u n ) that each term in (10) is bounded by a n' n. Since JII'J = in 
= )(kn )  -

nn n n,

we see that (10) is bounded by O(kn' n ) = oil) by D(un). Finally
in ]J 6Te + °(1) in d' "

Ino P(A.,) = [= l- k - exp(-OT Y (b! - a!)) as
k=1 1k 1n 'j-1 J J

n -o ,by (6). [

We have therefore in some particular cases the desired result.

Theorem 3.3: Assume that the stationary sequence {Xk} satisfies D(u n),

(A) and (6). If the measure v is concentrated in a sinole point

k > 1, then
d

Y Y as nn

where Y is a Poisson process on (0,1] x IN (concentrated on (0,1] x {k}).

Thus the projection Zn = (Y n) on (0,1] converges in distribution

to the projection ff(Y), which is a compound Poisson process with

compounds identical to k.

Remark 3.4: The particular case when D(u n) and D'(u n) hold, is

included. For D'(un ) implies a2=0, thus so=2, EM + T > 0o n

and pl = l/Ctl = k = 0 for k > 1. Thus (A) and (4), therefore

also (A) and (6), are satisfied.

Remark 3.5: Since (3) and (4) imply (A) by Lemma 2.1, the theorem is

also true if (A) and (6) is replaced by (3) and (4).

For general situations of the mark measure i, we need a stronoer

condition D* instead of D.
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Condition D*(u n): We assume that for any integers n,Z

sup I P(A n B) - P(A)'P(B) 1< n and n  0 as n o
A,B n

where A E of{U1,U 2 ,...,Uk}, B E {Uk+Z+1,Uk+ L+2'**"' n} for any k

with U. = I{Xi > u } and a suitable sequence £=O(n).
1 1 n n

Note that D (u n ) is still weaker than the strong-mixing condition.

Let the measure Xxvj be defined by XIxj(B) = eTI(b.-a.)I(N.) for B as in

(8).

Theorem 3.6: Assume that the stationary sequence {X n } satisfies

D*(un), (A) and (6). Then Yn Y where Y is a Poisson process on

(0,1] x IN with intensity measure Xxu. Thus the projection
d

Z = (Yn -u (Y) = Z with Z a compound Poisson process where the:.;.,:- n

probability law of the compounds is given by i.

Proof: By Kallenberg's Theorem and Lemmas 2.3 and 3.1, it is
- J

sufficient to prove PlY'(B) = 0) -) exp(-OT I (b.-a)U i~ )) with B
* as n j=l '3 '3

as in (3). Now analogously to the proof of Theorem 3.3

P{Yn(B) = 01 = P{ n (N'(i) I N., i E (knaj , knb D}
j=l n nbJ

J 1~nl -

f 11 P{A } + {P( n A )-P( nA )'P(Ai)}
j=l iE(k a.,k b.]  t=2 k=l "k k=l ik

nj n j
* where A. = {n'(i) J N.) with j j(i) and by enumerating the i's

in In =_(kna.,k b.) with i
j=l ' k

Each term of the sum is by D ) bounded by a* t since the indexn n,e~

sets are separated by tn. Thus the sum is bounded by

n(IinlIn, ) = O(kn'OL,) = o(I)
n n1

by choosing kn such that knCn= a(1) and knn o(n)

n

% %



(e.g. kn = mmn(nn-  ,(n/t) ). Finally, the product is equal to

J k (b.-a.) NJf OT(N ) + o(1) kn(ba
TI[P{N'(l) ( N.}] n'b -a = II 1 - aj

j=l j=l n

J

exp (-OT Z (b.-a.) ji(N.)) = exp (- xp (B)) by using (6).
j=l J J

Corollary 3.7: The statement of Theorem 3.6 is true if (3) and (4)

hold together with D(un)-

4. Examples

In this section we discuss two examples exhibiting the particular

cases given in Theorem 3.6 with so < - and so 
= .

1) An example, given in Haiman (1981), illustrates also Corollary

3.7 with so < 0. Let 1nk 1k>0 be an iid. sequence with continuous

distribution function F(x). Let kik> I be another iid. sequence,

independent of {nk}, with Jk Bernoulli (p), i.e.

0 < P{Jk= O} = q = 1-p = I-P{J k = 11 < 1.

Then define Xk = 'k-J Obviously, {X I is strongly stationary

k Jk' k k>1
with marginal distribution F(x). Let un be such that nF(un ) n T>O.

Note that {Xk} is 2-dependent, thus D(u ) and D (u ) hold with anyk n n
kn= o(n). We show now that (3) and (4) are satisfied. For

n r

E(2)= k (rn-) P{XU, X.>u } = k (r >U >U
n nj=2 1n I n k n 1) P{XIun X2 un

+ O(kr (uF-2 )) = q-p k (rn-l)F(U) + O(kn l) 'q p , since knrn nn O~n n  ( n nn n nn

and P{X1 > Un,X 2 > un qp F(un ) + (0 - q p ) e(un).
()isbounded by O(knr n ))"oI

Furthermore we find that n is r?4(u ) 0).

t~~ n n h*t'n .. t .WV q**.*
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Thusc 1  r, c2 =q p , 3  0, S0 =3. Thus (3) and (4) hold
T~-l

with e = 1 (T - -qp ) = l-qp > O. Finally

= (1-2qp )/(l- qp ) and = q p /(- qp )

Thus Corollary 3.7 implies that the number of exceedances of the level

un in (0,I] is asymptotically compound Poisson with mean number of

clusters equal to OT where the size of the clusters is either 1 or 2

with the above asymptotic probabilities.

2) The second example exhibits the case so = 0 . We use the example of

Denzel and O'Brien (1975) of a "chain-dependent" sequence {Xk}k>l

defined by means of an ergodic Markov chain {Jk' k>O} with positive

inteqers as states and connected by

= P{J = j'  n XIJn-l = il = P iHi(x), Vnl, i,j>l.

P.. are the transition probabilities, Pij = on. + 6 with

0 E (0,1), 11. = -'-(j+l) - 
, j>l, 110 = 1-2-h, ij = 1 for i=j, 0, other-

.. wise. Hi(x) are non-degenerate distribution functions defined in the following.

Let H(x) be a continuous distribution, HT(x) = 1-H(x) and yi such that y 0 ="0

. H(yI) = Il, H(yi ) = R, + IT2 +...+ H i = 1 - (i+1)-1 /2. Then let

H.(x) = 11 (H~x)if x<yi-

Hi(x) H (H(x) H(yi_l)) if yi-1 < x < Yi

1 if x >

In the stationary case (i.e. the distribution of J is 11 = (IIo,T. .))

Xn has the marginal distribution H(x). Since this "chaiii dependent"

sequence {Xn is strong-mixing, the condition D*(un) is satisfied with

u such that nff(un ) = T>O. A simple argument shows that

n n
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Yj(n)-l = dn < un (T) < dn = Yj(n)

with j(n) = [n2/T'] and nH(dn) T U, niT(dn ) - T. Therefore we may considern n
exceedances N (i) of the level d , which simplifies the calculations.

nn ODk l
We have to prove that P{N n(1) > kIN n(1) > 11 = (-e) l

--k
V k > 1. Thus P is the geometric distribution on IN.

i) Note that following Denzel and O'Brien (1975)

P{N n(1) = O} = P{M rn< Yj(n)} = {1-(l + j(n))- }{l - O(1+j(n))21 ' n

and thus

P{N n(1) > 11 = (1+0(1)) 0 r nf(d n).

ii) We deal now with PIN n(1) > k1. We use that by the construction of

the sequence Xn and dn

{N n(1) > k} = {# {i: Ji > j(n), i=O,...,rn- 1) > Q = Ak

For k fixed we denote the times of the first k exceedances Ji>jn by

i1,i2 ,... , k with 0 iI-i2 5i 3< ...<i k<rn-1.

B = IV t = 1,...,k-1: i+ = i+l}.

In the following we consider the events Ak n B and Ak n Bc, and use

the following transition probabilities

a) p(k) k h =i} = ]I - k k)
ih k+l= J Ih(( ) + (l')k 6ih

V i >l1, h>l1, k >l1.

b) P*(k) = P{jk+l = h, Jk < J(n),...,J 2 < J(n)IJl = i =

-% - - , ...." .'..,.. ' - , .. -." 2 . " - -. .,
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[ 2H(dn)n h(l-'R(dn)) k-2 if W

, i ,h>j (n5•

ON + (l-065ih if k=l

c) p*(k) = 011h (1 - eiT(dn))k-l if , i<j(n) h>j(n).
.:5. ih if _ _

, By using these formulas, a straightforward calculation shows that
r. . -k+l

"-. rnrn-kl i-2
P(Ak n B) (-0)k'  d n) (1 + eH(d n) (1- fH(d n))

Since (1 - eH(dn5))n = 1 - ernff(d n) + o(rn R(dn)), we find that

P(Ak n B)/P{N n() > 1 } - (l-)k l  kWl.
Usino the same formulas for P(Ak n Bc) we find that P(Ak n BC)

= o(rnH(dn )) = o(P{N n(1) > 1), which completes the proof on the

cluster size distribution v.

Therefore Theorem 3.6 implies that the point process Yn converqesmn

to the point process Y in distribution with

= e(- )k-l k>.

In the case 6 > li it is also possible to prove the conditions (3)

and (4). But for e < condition (3) is not satisfied, thus showing

that (3) is not a necessary condition.

From the definition of B and the above derivation it follows also that

if the sequence Xk exceeds the level un, then this happens consecutively

a geometric random number of times.

:--
'S , , .. . . , , . , , ¢ . . , . .. ,, , .o ,.. . , . '. , ¢ " - '' - . ,, '
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